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specific heat at constant volume

detonation velocity

specific internal energy
total internal energy
activation energy

Lagrangian spatial coordinate
heat of detonation

shear modulus

mass
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maximum input pressure
artificial viscosity
chemical energy release rate
retonation velocity
universal gas constant
product gas constant

time

characteristic rise time
temperature

hot spot temperature

characteristic burn temperature

..................
...........
.........

Units

cm/s
erg/g/K
mm/usec
erg/g

erg
erg/mole
cm

erg/g
dynes/cm2
9
dynes/cm2
dynes/cm2
dynes/cm2
erg/g/s
mm/usec
erg/mole/K
erg/g/K

s

usec

..............

---------------
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Greek

f

activation temperatuyre
particle velocity

specific volume

volume

unreacted mass fraction

Wg = 1 - Wy

hot spot mass fraction
Eulerian spatial coordinate
yield strength

frequency factor

run-up distance to detonation

Vi/Vg = 1/(1 - ¢)

covolume correction term
porosity, Vg/VT

Gruneisen coefficient

isothermal compressibility

of the material at standard
conditions

coefficient of thermal expansion
density

hot spot decomposition time

Helmholtz free energy

cm/s

3/9

cm

cm
dynes/cm2
1/s

cm

cm3/g

cmz/dynes

1/K
g/cm3
usec

erg/g




mv

Subscripts
bc

¢J

boundary condition
Chapman-Jouguet state
gas

isentrope

initial state

solid

total or mechanical mixture




ABSTRACT

Increasing the nitramine content of solid rocket propetlants increases
the overall performance of the system as well as the sensitivity to detonation
by shock initiation. In some instances a confined zone of granulated propel-
lant adjacent to a zone of cast propellant can provide a rapid enough pres-
sure~rise rate to shock initiate the cast material. If the cast propellant
is porous, the detonation will initiate at some location ahead of the granu-
lated bed/cast material interface. The work presented here is an effort
to numerically model this Deflagration to Shock to Detonation Transition
(DSDT) event. Results are presented showing the detonation build up for
propellants/explosives with various initial void content and ramp wave com-
pression loads.




CHAPTER 1

REVIEW AND OVERVIEW

Improving the specific impulse of a solid rocket motor continues to be an
engineering endeavor. The specific impulse of a system is defined to be the
ratio of thrust to fuel mass flow rate and is a technical description of the
overall performance of a system. Recently, one of the most advantageous ways
of increasing the specific impulse has been to use secondary high explosives
as constituents in the propellant mixture. However, when high-energy
nitramines such as HMX (octogen) are utilized in the propellant formulation
the hazard of a Deflagration to Shock to Detonation (DSDT) becomes a relevant
new concern.

A DSDT event is defined as a controlled subsonic deflagration wave making
a transition to a high order steady detonation wave. Mast researchers agree
that in order for DSDT to occur the rocket motor grain must first be
damaged. Granulation of the propellant bed can be a result of a handling
accident or case and/or nozzle failure during operation. Moreover, once a
region of granulated material has been ignited in a confined configuration the
high surface to volume ratio particies provide an increased gas generation and
a rapid pressurization rate which can shock initiate the detonative
reaction. Therefore the occurrence of a DSDT event can result in total
destruction of the solid propellant rocket motor assembly in the order of only
milliseconds after the onset of granulation,

Since the employment of high secondary explosives in the propellant

formulation is now taking place (to increase the specific impulse), there is a

need to understand the criteria for a DSDT event to occur so the hazard can be ®




eliminated or at least avoided. In recent years there has been an increasing
amount of research in this particular area of hazards. At the University of
111inois, under the direction of Professor Herman Krier, an effort has been
made for over a decade to investigate the occurrence of a Deflagration to
Shock to Detonation Transition in cyclotetramethylene tetranitramine (HMX,
octogen). Examples of previous studies are given in references [1-4]. The
research in this study is an attempt to delineate a DSDT event from the onset
of compression waves pronagating into the propellant bed to an eventual steady

detonation,

1.1 Related Published Work

As mentioned, here at the University of I1linois, Krier and co-werkers
have extensively examined the possibility of DSDT occuriing as a result of
convective flame propagation through granular propellants [1-4]. The
propagation sequence of events can be summarized as follows. First, pressure
gradients develop in the granular bed from the localized burning of propellant
fragments. To conserve momentum, the hot product gases are driven through the
cracks between the propellant fragments. Convective heat transfer from the
product gases to the surface of particles ignites more fragments, which in
turn increase the pressure gradients. As more and more fragments are ignited
the pressure gradients increase in magnitude eventually leading to shock

initiation of the detonation of the unreacted propellant. This process of

events is referred to by some as the accelerated convective burn model,

g % s

developed by Butler, Lembeck and Krier [4]. In brief, the rapid pressure
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On the other hand, Campbell's investigation [5] suggested that convective
flame spreading was essential only in the early stages of DSDT. He suggested
that the stress waves produced by the burning fragments propagate ahead of the
flame front and subsequently cause detonation. As the pressure gradients
increase, stronger compression waves propagate and coalesce with earlier waves
to form and continually strengthen the shock prior to detonation. Campbell
went on to hypothesize that once a critical pressure was reached the pores
would collapse between the fragments and cause a solid plug to form, The plug
would continue to grow until the shock wave was strong enough to initiate
detonation and in some instances retonation,

To validate his theory experimentally, Campbell packed a thick walled
steel pipe with granulated HMX and inserted one or more neoprene diaphragms at
various locations throughout the interior of the column, The neoprene disks
completely covered the cross-sectional area of the pipe, preventing
penetration of the hot product gases beyond the location of the disk. For
various degrees of fineness of granulated HMX, the experiments showed
detonation does occur ahead of the disk and in advance c¢f the convective flame
front. Figure 1.1 delineates the procession of the stress wave as time
increases, brought forth by the burning propellant fragments, in times Y
through te. At time tg, the stress wave has advanced ahead of the first
disk. Subsequently, the figure portrays at times tg and ts, the detonation
wave traveling through the granulated bed. Furthermore, for the same
effective diameters, experimental runs were made, absent of the neoprene
disks, with coinciding run-up to detonation distances. In summary, Figure 1,2
depicts the measured run-up length to detonation for HMX granulated beds, with

and without interval barriers.




++2 9u0z uL jue||adoad 3y}
s3jeL3LuL ¥ooys [ auoz ul jue||ddoad aepnueab Butuanq dyy 9 J4ed
"53| 1404d HOL}RIO(~X - 3ANSSAAd paunsse Jo

uotjearsnit pue [G] juswtLuadxa s, L19qdwe) jo DJ13PWABYDS 1y I4Rd T°] a4anb1 4

aqn| [99iS~ J9)1ub

OSUN NN NN NAANN NN N NN N NNNNN

. -

t ouoz @ ¢ ouoz HG@B 2 ouoz HfProucy (8)

SUSOS N NN NNNNN NN NNNNNNNAINNNANY

2 %sIQ 148107

(v)

9INSS3.d

9

- e — —— —— . . - - . =
&
=

F‘




.......

.........................

3 uoijeuojap Bulmoys [g) erep s,|1aqdwe) jo Aaeumns g°1 aanb1 4

BLwd = ssowy/s (Daly 9I04ING J1103dS)

0.0.0)1 OOONN 000¢ OOO.V OOOm OOO@ OOON 0
_ _ (7)) seppwoiq andaYT
0] T.H O.WH Qw_” QmuH Q_m Q_w ﬁ.v
. m ! o2
r ! cwa/bg1="
" | 14d XAH ob
- — —
! 690=61/1€T1=CP-1) | &
7 WN‘sowo so | 3
- T IPqdwo) MY 109 3
| (uoyubl wouy fgopg | 3
o = wwe)¥sdlo
- g T (siefowwy) 108
4 € ¥sig dunN v
3 %S0 ON o
{ | 1 il 1 L 1 8H




Unlike Campbell [5], Macek [6] and Tarver [7] et al. studied DSDT in

homogeneous solid explosives. Macek ran a series of experiments in which

heavily confined cast cylinders of dicthynitramine dinitrate (DINA) and 50/50 i;;;;
pentolite were thermally ignited by an electrical source. The pressure rises -3;
observed in the experiments by Macek were approximated by an exponential, ,.
P=0.08 exp(N.1 t), where pressure, P, and time, t, had units of gigapascals : ﬂ;;
and microseconds, respectively. Moreover, Macek used a simplified model to .>‘£E
serve as a prototype of explosive burning under confinement. The model i' B
employed a linear burn rate at the plane of deflagration, which is normal to

the direction of the propagation of the flame, that separates the product ~.j
gases from the unreacted explosive. Accordingly, the method of ;'_:;
characteristics was utilized to obtain theoretical verification for the :
experimentally observed run-up distance to detonation. The point of :iﬁf?
coalescence of the right-running characteristics, as shown in Figure 1.3 was ;E::;

conjectured to be the point of formation of the shock which consequently

initiates detonation.

However, Jacobs [8] found that Macek [6] had neglected to include the Jl-fﬁ

compressibility of the material, and with this correction in the model, his &;i;ﬁ

recent calculations infer that conductive burning could not have produced a
shock wave. Both Jacobs [8] and Tarver {7] concluded that a mechanical means A

of increasing the burning surface must exist to obtain exponential burning

rates that exceed the expected normal rates by several orders of magnitude. ;';i@
Hence, Anderson and Kooker [9] postulated that deconsolidation of a slightly ;’.
porous material could occur through confined burning by shear-induced

stresses, thus creating a greater surface to volume ratio.
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realistic Mie-Grunsien equation of state. Instead they used the Tait equation

8 ]

Recently Coyne, Butler and Krier [10] studied the propagation of stress :
waves into porous HMX. During their investigation they found it difficult to -O‘
employ the method of characteristics while utilizing a version of the more f};j;i
8

%

p

of state, which does not properly represent the isentrope, to obtain a
numerical solution of the conservation equations by a Lagrangian finite
differencing technique. This solution was to be verified by comparing results
to those obtained by the method of characteristics. Depicted in Figure 1.4
are the results of the comparison. Eventually the modified Mie-Gruneisen
relation was incorporated in the finite difference code to model stress wave
propagation in a porous nonreactive material.

The "Pop-plot" is named after its originator, Nickalous Popaloto, and
delineates the shock pressure strength to run-up distance to detonation on a
log-log scale. Figure 1.5 is an example of a "Pop-plot" which was obtained by
Dick M11] for porous HMX. DNue to the hazards associated when experimenting
with explosives and the difficulties in obtaining accurate results, there is
Tittle data on run-up distances to detonation for granular explosives.

However, using a data acquisition technique different from the standardized

wedge test, J. J. Dick obtained "Pop-plot" data for porous samples of HMX of

initial density Po= 1.24 + 0,04 g/cm3 [117. The wedge test records the

trajectory of a shock as the wave travels through a wedged shaped sample by
photographic techniques. Different from the standardized test, Dick measured T-:GQG
only the total time that the wave resided in the cylindrical sample, thereby ,-O

producing a "Pop-plot™ through extensive runs and statistical analysis.

Setchell {12] also ran experiments on initiation behavior of granular

expiosives. Utilizing Laser Velocity Interferometry, Setchell studied "ramp" ..&




Comparison of Stress Wave Propagation
E using the Tait E.O.S.

? 4. ——— Finite Difference Calculation
———— Method of Characteristics
P[xo(t),t]=[0.008 GPa] exp[(O1/us)t]

S. T - *
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Figure 1.4 Stress wave propagation through solid HMX, from both the
finite difference calculation and the method of
characteristics. Both utilizing the modified Tait
equation of state. Figure taken from Reference [10].
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Figure 1.5 Run-up distance to detonation versus input stress
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"ramp" waves having a finite rise-time of either 0.3 or 0.8 microseconds. By

shock loading proyoceram, a material known to have stress-strain relation with
negative curvature, he was able to disperse a shock wave into a wave having a
finite rise time, Setchell found, by comparing velocity-time profiles of
tests on PBX-9404 shocked to the same peak pressure, that very little
chemical energy was released in the tests with ramp waves prior to shock
formation., His records indicate that local hotspot generation and ignition

are strongly inhibited by finite rates of compression.

1.2 Hot Spot Theory

Although the theory of hot spots as a source for ignition in porous
material is widely accepted, there is very little conclusive evidence on the
matter of generation. Some of the hypotheses for hot spot generation are
shear banding, jetting, shock focusing, and/or adiabatic compression. For
more detailed information, see to References [13-16]. Hayes [17] suggests
that the total energy deposited by the shock wave can be equated on a mass
fraction basis to the sum of the reversible work done in isentropically
compressing the bulk of the material plus the irreversible heating of
localized hot spots, i.e.,

P+P,
7 (VTO-VT) = NH e(VT,TH) + (l'wH) eI(P) (101)

In equation (1.1) the left-hand side represents the total energy deposited in
the material by the shock of strength, P. The temm eI(P) represents the

energy required to isentropically compress the bulk of the material to the

final shock pressure, and the remaining energy term, e(vT,TH), is the energy
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available to irreversibly heat the hot spots. The Hayes model assumes the
mass fraction of the hot spots, Wy, to be equal to the preshock specific

volume fraction of pores

NH = VTO/VSO -1 (1.2)

Here, the subscript 'TO' represents the initial porous state, and the
subscript 'SO' refers to the homogenous initial state., Furthermore, Hayes
[17] states that scissing of particular chemical bonds, stemming from the high
frequency content in the shock front and the construction of a non-equilbrium
temperature, can be responsible for the increase in reactivity and
subsequently the decrease in decomposition times for the hot spots observed in
his experiments. Figure 1.6 compares the observed decomposition times for
hexanitrostilbene (HNS) to times derived from low-temperature Arrhenius
kinetics for a hot spot temperature regime., Consequently, the explosion model
fails to predict corresponding decomposition times and falls away by a bigger

margin as temperature of the hot spots decrease.

1.3 Scope of Our Study

As previously mentioned, only if there is fragmentation of the propellant
bed in the burning region, along with proper confinement, will there be
sufficient pressurization rates to shock initiate detonation for cast
explosives [18]. Consider a rocket motor with a center burning grain

configuration as shown in Figure 1.7. To illustrate a DSDT event, a crack in

£

the propellant grain is assumed, and within the crack a packed bed of

fragments of known surface-to-volume ratio exist. The fragment filled crack @
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is enlarged and shown in Figure 1.8. At some arbitrary time, the bed ignites
and starts burning at x=0 (left-end of figure). Increased product gas
generation beyond the level necessary for steady state motor operation
orginates from the assumed high surface-to-volume ratio of confined sub-
millimeter size particles. In other words, the amount of gas being generated
by the decomposing propellant far exceeds the amount exiting the nozzle.

1f the length of the packed bed is longer than the critical condition for
accelerated convective combustion to occur, subsequent detonation is
inevitable [19]. However, if the bed length is less than the critical length,
pressure gradients produced by the granulated propellant can provide the
impetus to shock initiate detonation in the adjacent region of cast explosive,
depicted as zone 1 in Figure 1.9. Only stress waves can be transmitted across
the zone2/zonel interface. Even though the solid may contain pores, it is
assumed to be impermeable to the flow of hot gases. A schematic
representation of the sequence of events leading to Deflagration to Shock to
Detonation Transition modeled in this study is shown in Figure 1,10, A value
of ¢ equal to unity represents a zone of all gas, whi]e'¢ equal to zero
indicates a homogeneous solid. In Figure 1.10, the heavy black dots are
representative of microvoids in the cast material, 1Illustrated in Part B is
the collapse of the pores, a result of the stress load transmitted across the
granulated bed/cast explosive interface. Parts C and D show the length of the
pore collapse zone to increase with time as the lead compression waves travel
farther into the explosive. The finite compression waves coalesce into a
shock front which then initiates the cast explosive downstream of the
interface. From this location a detonation wave propagates through the

porous material, while a retonation wave propagates back through the

compressed material (Part E),
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Figure 1.10 Proposed five-part sequence of events leading to
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The purpose of the research study here is then to model the key elements
- d

Ii of the five part scenario. A one-dimensional hydrodynamic Lagrangian finite L]
difference technique is used to numerically solve the conservation equations

of mass, momentum, and energy. A pore collapse theory derived by Carroll and

" Holt [20] which demarcates three regimes of deformation, elastic, elastic- ’ L
plastic, and plastic is utilized to determine the rate of compaction and the
development of the solid plug. BRasically, this portion of the code is an

extension on previous work done by Coyne [21]. Furthermore, the Hayes hot o

spot theory is incorporated in the code to define the sensitivity to
reaction. By introducing reactive chemistry to the code, a strong effort is
made to model the detonation and retonation waves which are initiated by a ®
shock wave generated from ramp wave inputs with rise times on the order of
tens of microseconds, It was shown in Reference [19] that rise times of this

ii order are typical for burning, granulated beds whic“ have lengths less than Ti;—f:
their critical detornation run-up length. Although, Setchell [12] also studied _S:{iﬁ

ramp waves, the rise times were faster by an order of magnitude.
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CHAPTER 2

MATHEMATICAL AND NUMERICAL ANALYSIS

The equations which mathematically model shock initiation to detonation

[ | due to a rapid compression of high explosive containing voids are presented in L4

the sections to follow, Specifically, the material being considered here is

HMX, requiring specific constitutive relations. Properties for HMX are listed
in Appendix A. The model clearly can be applied to other reactive solids, but LA
an equation of state, a caloric relation, and the material Hugoniot must be

known.

2.1 Free Boundary

The first step taken to model DSDT in a porous explosive solid was to

determine the pressure gradients produced by the adjacent reacting granulated .!_f?

bed, Zone 2 in Figure 1.9. An analysis by Butler and Krier described in %jéf

Reference [4], models the accelerating convective burn gnd rapid pressurizaton E;kﬁf;

for granulated beds of explosives. :;;f‘
Figure 2.1 presents the predicted pressure rise rate at one location in

such a bed. The bed length is always less than the required run-up distance

to detonation, %¢;- Notice that the pressurization rate is strongly dependent _é_ _

on particle size, increasing, as one would expect, with smaller propellant .

fragments., Subsequently, the rate at which the impermeable bed is being

stressed (assuming that such a bed is adjacent to the porous, permeable bed) *

is defined by the pressure-time functions predicted by the Deflagration to u;fk

Detonation Transition case documented in Reference [19]. ?31;,

®
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The pressure-time function here is approximated by a linear p-t relation,
with the slope a specific function of the material properties. Therefore to
simplify the loading boundary condition at the granulated/cast bed explosive
interface, the pressure magnitude of the left free boundary was assumed to

satisfy

©
——
[ad
~—
"

(p* - Po)(t/t*) + Py t <t (2.1a)
P(t) = p* t > t* (2.1b)
Here P* is the maximum pressure applied to the left boundary, while t* is the
characteristic rise-time for the "ramp" wave to reach the maximum stress at
the free boundary. It should be noted that a typical range of t* includes the
interval 1 < t* < 50 microseconds. Thus this type of "ramp-loading" is much
slower than the “ramp" wave compressions of explosives studied by Setchell
(121, where 0.3 < t* < (0.8 microseconds. A shock loading to P* is usually

assumed to be t* < 0.01 microseconds.

2.2 Governing Equations

For our hydrodynamic analysis the Lagrangian or material form of the
governing equations was chosen, instead of Eulerian form. The Lagrangian
coordinates are fixed to the material and follow this material as it moves
with time, whereas the Eulerian coordinates are a fixed frame of reference,
where mass, momentum, and energy may enter or exit through the control
surfaces. . Therefore, with the Eulerian formulation, the boundary location
must be implicitly determined after each time increment, However, with the

Lagrangian description, the location of the free boundary condition is

P
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explicitly known, since the Lagrangian boundary coordinates move with the

material boundary.

The inviscid Lagrangian one-dimensional unsteady form of the conservation

of mass, momentum, and energy equations are expressed for total mechanical

mixture, respectively as

wla
<

Q
[ =

|

S
(a4

and

wlar
ol

au

= vs—ﬁ

(2.2)

(2.3)

(2.4)

In equation (2.2 - 2.4), v represents the specific volume; u, particle

velocity; e, the specific internal energy; P, the total stress; and Q, the

heat added by chemical reaction per unit mass per unit time, The symbols

3
ah

spatial coordinate and time, respectively.

—= and 3% indicate the partial derivatives with respect to the Lagrangian

For comparison purposes, the

Eulerian form of the conservation of mass, momentum, and energy equation,

respectively,
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where the symbol sé-denotes the partial derivative with respect to the

Eulerian spatial coordinate. Notice that equations (2.5 - 2.7), in absence of
the convective flux terms, are identical to equations (2.2 - 2.4). Since the
same mass is contained in a given Lagrangian control volume throughout the
variation of time the convective flux terms do not appear in equations (2.2 -
2.4).

Generally, the Lagrangian form of the governing equations are easier to
incorporate into a numerical solution technique, since it is clear that they
are in a simpler form than the Eulerian, and, most importantly, one has the
advantage when dealing with a free or moving boundary condition. To provide
mathematical closure to the governing equations, for an inert material, an
equation of state is needed, since the three equations (2.2) to (2.4) involve

four unknowns.

2.3 Constitutive Relations

From the Second Law of Thermodynamics, there exists a unique relationship
between the material equation of state, P (v, T.), and the caloric equation
of state, eg{vg, Tg). One way of relating the two state equations is through

Helmholtz free energy function and its thermodynamic derivatives. Therefore

Ps(vs, Ts) and es(vs, TS) must satisfy the reciprocity relations.
= .9
PS =V (2.8)
S
" - L
e v~ T, ST (2.9)

.................
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In equations (2.8) and (2.9), T represents temperature, P, pressure, e,
specific internal energy, v, specific volume, and y Helmholtz free energy.
The subscript s denotes a solid material, while the symbols
3% and 3% indicate partial derivatives with respect to specific volume and
temperature, respectively. Appendix B gives a review of these fundamental
thermodynamic concepts.

With the assumption that the Gruneisen coefficient, I, is constant, the
Helmholtz free energy function is expressed in the following form (Baer and
Nunziato [22]).

plv_,T.) = J(v.) + rcv zn(;ig)(T -T )

’
$*'S S s S

T
S0
+ GVS[Tszn(———) +T,-T

T (2.10)

where ¢, represents the specific heat at constant volume of the solid phase
which is also assumed to be a constant. The term J(vs) in equation (2.10) is
a nonlinear volume-dependent function determined from shock Hugoniot
experiments [22].

The Gruneisen coefficient is defined by the thermodynamic derivative
(2.11)

which characterizes the ratio of thermal pressure to the thermal energy of the

lattice. At standard volume, the Gruneisen coefficient, I, = r(vo), of a

material can be related to other properties, such as the isothermal 9

compressibility of the material at standard conditions, xo
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I N 1 av
% = v G 1 (2.12)
)
and the coefficient of thermal expansion at constant pressure, Xp
n
. 1
0
- Thus an expression can be obtained for the Gruneisen coefficient at
standard volume, i.e.,
:
2
_ vorcp } K‘L ) KPCO
I‘0 C x p C«k c (2.14)
oV o v
g where c, is the ambient sound speed of the material.
Although equations (2.2-2.4, 2.8 and 2.9) form a basis for the
:1 mathematical description of a homogeneous material, an additional relation is
needed to describe a heterogeneous material. Porosity is defined as the ratio
l‘ of total volume of the material to the volume occupied by the solid phase, or
v
o = V_T (2.15)
s

Initially, the volume not occupied by the solid material is assumed to be
massless. With the introduction of porosity an additional equation is needed
to complete the mathematical description.

Extensive research in the area of mathematically modeling the collapse of

a porous material under an applied external load has been performed by Carroll

and Holt [20]. 1In their model the porous matrix is exemplified as a hollow
b ®
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sphere where the inner and outer radii are chosen such that the overall

' porosity of the material is accurately portrayed. As previously mentioned in
Chapter 1, the model of Carroll and Holt [20] assumed pore collapse to occur
in three distinct regimes: {1) elastic phase, where elastic deformation in

" the solid takes precedence, (2) elastic-plastic phase, where plastic

| deformation initially starts at the inner radius and subsequently progresses
outward until plastic deformation begins to occur at the outer radius, and

-~ (3) plastic phase, where plastic deformation occurs throughout the sphere.
The so called "P - a relations" for the three particular phases of compaction

and the appropriate range over which each applies are given by,

elastic phase ag > a > ap
’ 4 G(a, - a)
B . 0
p = TG T (2.16a)
) elastic-plastic phase a; 2 a>a
2 26 26(a,- a)
P = -3- Y {1 - T; (ao— a) + Qn[m]} (2.16b)
4 plastic phase ap > a>1
_ 2 a
Po= 3Yan (=29 (2.16¢)

where the limits between the three phases are expressed as

. 26 a  + Y
T T/ (2.17)
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a = (2-18)

~N
[
+

<

Kooker and Anderson [9] have also used the static pore collapse model with the

yield stress, Y, and shear modulus, G, expressed as functions of a, namely,

Y o= ¥,/(20 - 1)2 (2.19)

[ep)
I

G, exp [-5(a - 1)/a) (2.20)

Here, Y, and G, are the initial yield stress and shear modulus,

respectively. Figure 2.2, taken from Reference [21], illustrates the three
regimes of deformation for various initial porosities. Notice that the
plastic phase approaches unity, complete compaction. During deformative
compression the pressure of the mechanical mixture s equated to the pressure

of the solid

(2.21)

Thus, with the additional parameter a and the "P - a law", a mathematical

description for a nonreactive porous material is complete.

The governing equations for the conservation of mass, momentum, and
energy represented in Section 2.2 are written in terms of the thermodynamic . ,
properties (P,v,T7,e) of the mechanical mixture as well as the dynamic variable if:}:?:
u. However, during reaction additional relations are needed to separate the -

individual phase properties of the solid and product gases from those of the . ®
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Figure 2.2 Pressure-void volume relationship for porous HMX.
Figure taken from Reference [21].
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mixture. Hence, it is conjectured that any arbitrary volume, Vy, within the
continuum can contain both the solid and gas phases. Therefore the individual

phase volumes sum to the total volume, i.e.
Vp o= Vg + Vg (2.22)

Analogously, the total energy of the mechanical mixture, Ey, is the sum of the

total energy of both the solid and gas phase, represented as
Er = £+ ES (2.23)

With the introduction of a product gas phase in the mechanical system,
another constitutive equation must be prescribed. A nonideal covolume
equation of state was chosen, similar to the one utilized by Butler and Krier
[19], for the product gas phase, namely

a

Pg = RTg (1 + s/vg)/vg (2.24)

where § is the gas constant, and 8 is a covolume correction term, The value

of g is determined from values for pressure, temperature, and density at the

Chapman-Jouguet (CJ) state predicted by a thermochemical code, TIGER [237.
Peaved

8 = v ( - 1) (2.25)
Cy R TCJ

A listing of the CJ values for several loading densities of HMX is given in

Table [2.1]. In accordance with the reciprocity relations defined earliier
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TABLE 2.1

CJ PARAMETERS PREDICTED BY TIGER [23]

% °T0 Py Teg Ve D B

(g/cc) (GPa) (K) (cc/9)  J(mm/us) |} (cc/g)
1 1.9 35,99 3714 0.4073 | 9.1%4 5.192
1.056 1.8 31.70 3833 0.4266 | 8,711 4,815
1,118 1.7 27.97 3931 0,4473 ] 8,301 4,522
1.188 1.6 24.72 4009 0.4713 1 7.925 4.300
1.267 1.5 21.86 4067 0.4977 |} 7.581 4,139
1.357 1.4 19.30 4106 0.5278 | 7.267 4,034
1.462 1.3 17.00 4126 0.5627 | 6.979 3.982
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(Equations 2.8-2.9), the caloric equation of state for the product gas phase

is expressed as

eg (2.26)

where ¢, . is an assumed constant which represents the specific heat at

g
constant volume of the gas phase. Furthermore, while chemical reaction is

present the additional assumptions,
(2.27)
T =T, = T (2.28)

are imposed,

2.4 The Localizec Hot Spot Temperature

Before specifically discussing the hot spot temperature, it is first
important to compare the relative amount of energy associated with shocking a
porous material compared to that associated with shocking a homogeneous
material, The text by Zeldovich and Raizer [24] provides detailed
background, Figure 2.3 taken from Reference [21] delineates the Hugoniot for
both a porous and homogeneous matrix of HMX compressed to a volume ratio of
v/vSo = 0,9. In Figure 2.3 the horizontally shaded area ABC and the
crosshatched area A'B'C show the increase in energy of a shocked porous and

homogeneous material, respectively. The significant increase in energy

associated with shocking a porous material compared to a homogeneous material

is conjectured to be the cause for a porous material to be more sensitive to

'@

shock initiation of the detonative reaction than a homogeneous material,
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Shock Hugoniots of Solid
and Porous HMX

Shock Hugoniots
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Figure 2.3 Shock Hugoniots for solid and porous HMX compressed to
a2 volume ratio of v/vSo = 0.9, taken from Reference [21].
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Referring back to Figure 1.5, a "Pop-plot" for various propellants, one can
see verification of this. Note the significant decrease in run-up distance to [
detonation for a porous material compared to a nearly homogeneous material, 5%
shocked to the same peak pressure. In additon, triangle ABA', shown in Figure T?t;%i
2.3, is representative of the amount of irreversible energy deposited by ‘:n.
shocking a porous material.

As mentioned previously in Chapter 1, the theory developed by Hayes [17]
suggests that the total energy deposited by the shock can be equated by the . ®
reversible work done in compressing the bulk material plus the irreversible
heating of the localized hot spots. The Equations (1.1 and 1.2) underlying
the theory, are rewritten as ' o

5 (vpgm Vo) = Wy e (v Ty) + (=W deg (ve,Tp) (2.29)

ol .
l_.. |

and NH = — -1 (2.30)

[T

where Ty represents the hot spot temperature. For a porous material, the
total energy of the mechanical mixture is assumed to equal the total energy of

the solid., Therefore, the isentrope energy, eI(P), can be expressed as
er(P) = e (vg,Ty) (2.31)

where Ty is the temperature defined by isentropic compression. A relation for ‘ .

the isentropic temperature is obtained from Reference [24] and is written as

o= T T (2.32) .




With this formulation one can calculate the hot spot temperature., A model is

now needed to incorporate this hot spot temperature into the kinetics which

represent how rapidly the solid explosive will gasify (explode).

2.5 The Combustion Model

Following the simplification used by Mader [25], a first order Arrhenius
burn model was chosen to describe the chemical reaction (decomposition) rate

of the solid material, expressed as

aw

T C - rWexp (-E*/RT*) (2.33)

In Equation (2.33) W denotes the mass fraction of unreacted explosive, z,
frequency factor, E*, activation energy, R , universal gas constant, and T*
the characteristic burn temperature. The symbol E% indicates a total
derivative with respect to time.

At first the characteristic burn temperature was represented by the
localized hot spot temperature, but Equation (2.33), utilizing values of z and
E*/ R (referred to as activation temperature) obtained from Nunziato [26],
resulted in too slow of a reaction rate. Hayes [17] also came to this
conclusion, based on experiments with a similar propellant, HNS. Since no
decomposition times for hot spots are available for HMX, we therefore fit our
model directly to Hayes data. By extracting several points from the curve in
Figure 1.6, decomposition time was found to be a parabolic function of hot

spot temperature, i.e.,
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+ 2.2082343 (120 - 1.0132332  (2.34)
H H

1000]2

Tog T = -0.6744703 | 7

where t represents the decomposition time in microseconds. The data used by
Hayes showed that a detonation occurred for a corresponding temperature of 619
K but did not for a corresponding lower temperature of 561 K, therefore 600 K
was the temperature selected for the lower 1imit in applying expression (2.34)
in the decomposition model.

To incorporate the decomposition time determined by Equation (2.34) into
the combustion model, Equation (2.33) was integrated to define a new
activation temperature corresponding to the predicted hot spot decomposition
time. Therefore, by integrating Equation (2.33), the following expression is

obtained

an W

B

~— (2.35)

= THzn [

| |m
*

where Wp is the mass fraction remaining after chemical decomposition of the
hot spot has occurred, Bearing in mind that this model is based on HNS rather
than HMX, the activation temperature predicted from Equation (2.35) is bounded
by the value given by Nunziato [26]. Subsequently, after the hot spot has
decomposed, the characteristic burn temperature is defined by one of the
following two values; (1) the bulk temperature or (2) the average of the
bulk and hot spot temperature. These are then two distinct cases which are
referred to as model CBl and CB2, and are expressed below (along with the

1imits in which they apply) as
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Model CBl Wg > W >0
™ = T (2.36)
Model CB2 Wg > W >0
T* = (Ty + T)/2.0 if Ty>T (2.37a)
T™* = T if Ty <T (2.37b)

Both models were used in the numerical solution technique. Based on the
interpretation of the predicted results, model CB2 was eventually assumed
better. A comparison of such results are presented in the next chapter along

with the explanation of why model CBZ was chosen over (CB1,

2.6 Review of the Key Assumptions

Before proceeding onto the description of the numerical solution
technique a 1ist of the key assumptions made in each portion of the solution

technique is presented below.

Homogeneous Material

Solid Phase

aP .
ae) is constant.

1) the Gruneisen coefficient, I = - v { v

2) the specific heat at constant volume, Cygs is constant.

"Ac
- . —
o
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R
T
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T T 4
el iy
L
Nl
o 4
W
SR
]
;‘ 9
®




38

Gas Phase

1) the specific heat at constant volume, Cvg’ is constant.

Porous Material

oP
ae)
2) the specific heat at constant volume, c

1) the Gruneisen coefficient, T = - v ( is constant.

v b

vs? is constant,

3) the voids initially in the material are regarded as being massless.

Reactive Material

3P
ae)
2) the specific heat at constant volume, ¢

1) the Gruneisen coefficient, I = - v { is constant,

v s

ves is constant,

3) the specific heat at constant volume, ¢ is constant.

vg?

4) reaction does not initiate until the voids initially within the matrix of
the material have completely collapsed.

5) the temperature of the gas phase equals the temperature of the solid phase
which equals the temperature of the mechanical mixture

6) the pressure of the gas phase equals the pressure of the solid phase which

equals the pressure of the mechanical mixture

Conseq antly, the subscripts of the parameters just equated will be dropped in
the section which follow.

Table [2.2] presents a method of procedure for solving the flow equations
which summarizes the logic, the manner in which these assumptions constrain
the results, and the iteration pathways to assure convergence of all dependent

variables,
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TABLE 2.2
PROCEDURE FOR SOLVING THE FLOW EQUATIONS

1) Solve for the conservation of mass, Fquation (2.2).

2) Solve for the conservation of momentum, Equation (2.3).

3) Solve for W, the mass fraction.

(1) If the pores initially contained in the matrix of the material have
not collapsed, W=1 (no reaction).

(it) If the initial pores have collapsed and the hot spot temperature,
calculated from Equation (2.29), is less than 600 K, use Equation
(2.33) to obtain a value for W.

(iii) If the initial pores have collapsed and the hot spot temperature is
greater than 600 K, use Equations (2.33), (2.34), and (2.35) to

determine a value for W,

4) Solve for the conservation of energy, Equation (2.4).
(i) Homogeneous Material

(1) Solid Phase - Solve for the remaining thermodynamic parameters,
(P,T), knowing that the total internal energy of the mechanical
mixture is equal to the total internal energy of the solid,
while utilizing the assumption that r and Cyg are constants.

(2) Gas Phase - Solve for the remaining thermodynamic parameters,
(P,T), knowing the total internal energy of the mechanical
mixture equals the total internal energy of the gas, while

making use of the assumption that Cvg is a constant.




e
40 f
;
(ii) Porous Material - Solve for the remaining thermodynamic parameters, )
- 4
F (P,vS,T). Utilizing the assumption that the initial voids are (]

massless implies that the total internal energy of the mechanical

-

mixture is equal to the total internal energy of the solid,

e T
st T
POPCEP AT Wl U U Y

Furthermore, an iterative technique must be used to equate the e

pressure predicted by the "P-a" law to the pressure of the solid by

Lo

varying the specific volume of solid.
(ii1) Reactive Material - Solve for the remaining thermodynamic parameters,

(P,vg,vs,T), by employing the assumption that the temperature of the

g gas and solid are equal to each other. In addition, the pressure of
the gas and solid can be equated by utilizing an iterative method

whereby the specific volume of the solid is varied.

5) Determine the hot spot temperature by employing Equations (2.29)-(2.32).
However, the hot spot temperature is only calculated after complete pore

collapse and before reaction begins.
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- 2.7 Numerical Solution Technique
The equations presented in the previous sections of Chapter 2 completely
define the hydrodynamics and thermodynamic state of a continuous, porous
medium, A finite difference technique patterned after the WONDY code [27] was
utilized to solve the system of equations., At the initial time, t = 0, the
- bed of porous propellant/explosive is discretized into J cells labeled from
| left to right as j = 1,2,3,...,J. The thermodynamic properties, pressure,
temperature, internal energy, and specific volume, are assumed to be constant
- over the width of each cell., At the boundaries of the cells, the parameters,
particle velocity, and spatial locations are defined. Figure 2.4 illustrates
the location of the points of evaluation of the variables in time and spatial
frames, where the steps in time are represented chronologically as n-1, n,
n+l. Furthermore, Table [2.3] presents the sequence in which the fluid motion
equations are solved, which are written in their finite difference
II approximation form. Steps (1-8), in Table [2.3], are performed to model
stress wave propagation in a non reactive porous material while steps (1-4)
and (5%-9%) outline the procedure in modeling the reaction of the propellant.
A1l variables are initially specified for each cell, located throughout
the bed. Following, the second time step is obtained by first determining the

velocity of the free boundary from the conservation of momentum equation,

written as

1 -1
NP N, (Ppc - PLIM; (2.38)

1& 1/, i ‘ g
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Cell Boundary, x

Yrmodymmic Variables, (P, v, e)

Cell
Boundary
Velocity, u

m A
E
=
old
n-1
‘ ' o . - Lograngian
-1 j-172 ) j+1/2  j+1 Coordinates
le—Cell —
" —P-

Eulerian Coordinates

Figure 2.4 Representation of finite-difference cells indicating how
the variables are defined with respect to the Lagrangian : :
indices and Eulerian coordinate system. Figure taken ° i
from Reference [21]. ’ 1
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Table 2.3

Lagrangian Finite-Difference Equations

! .1
1) W ;z_ 1;»fl/ +ath " /?)[(P+q)J - (P+q)]]

CREERY

1
where Atn * /2= tn+1 n

Mj = (h:].1 +lp” hg -1/2)/"3'] = constant
2) ;tl}z he RV RURE" gf%/fz
DT e T,
4) (i)q?{}) = 2.0 <ARv1)2<ug_:ig u; fig ) /V2+1
n+1 n o+ , +1

where qjqy = 0 if uy +f u; _1/2

n+1

Loy N+l n+1 n, n n+l n+1

where q;?;) =0 if v'.‘+1> v

coay N+l nl n+1
, = . + .
(313) 9 951)" 95(2)

5) P;H = f(agﬂ) determined by Equations (2.16-2.20) in Section (2.3)
1 n+l n+l
where ay T =V / (Vs)j
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n+l . n+l n+l
. = determined from e, = = (e_ ).
' 6) TJ ] ( S)J
ntl_ n n+l n, AV
where e; "= e ¢+ [(Pj+ qj) + (PJ.+ qj) ] 7+ AQ
n+l _ n+l_ n+l, ¥so
| (es)j Cvs(Tj T+ J[(vs)j J = m L Ten [(v : n+1]
1 1 =
n n+l, n n+
%= 2vj v\.l (vJ -zvj )
v (vg + vml)
aQ = 0 no reaction
' n+l_ n+l_ n+l ntl, 3 n+l n+l,2
7) PJ. (Ps)j {chs(TJ - To)(vs)j + v, [J((vs)j )]}/[(vs)j |7+ Py
+ * l
| 8) c] befcl f?
]
* n+l 3 n+l
C. = (v ). — [ (P_).
S ( S)J {avs [( S)J ]} partial derivative evaluated
at constant temperature
1 21 - T
| syt () wg”l = wg.’ -llzwg(Atn P2 at" T 2 exp { T e RLE lw;ﬂi W
()%
J
. *
where =T = Equation (2.35) » - &
R
(TH)§ is determined from Equation (2.29)
' ntl_ .n 1, .n n+1/2 n -1l 3 : n+l
M TE W h W (At + At 2)zexp[--—-T—-} ifW, >W, >0
J J J RT. B -7 -
J
here 81 T, = T7
where j j

¥ see explanation on page 45
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*x
T, =1 + TN if 10 < .
cR2 T =Y [T ¢ TS AET] < (T,
* _on n
Ty= Ty if Tji(TH)j
n+l . ntl_ , .n+l n+l _yntl n+l
T " determined from e; ; ( s)j ( NJ ) g)j
n+tl _ n+l_
where (eg)j = Cyg (Tj T,)
- n_ n+l
1 n+l, n+l n+l
LRSS AR TR . .
j ; | fs/(vg)J ]/(vg)J
n+tl _ n+¥l  n+l n+1
where (Vg)j =V Wj (Is)j
n+
(l'wj )
Pn+1 (P )n+1
J s'J
n+l
v,
1
N n+l n+l, n+l_ i
SRS T
n+1c* o‘n+1 C*
j s J g
* ~ A
where cg = 3R TS.‘” +68R Tg” / (vg)?+1

The localized hot spot temperature is determined after complete
compaction and the values used for specific volume correspond to the

pressure strength of the shock that initiated compaction.
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with g, the artificial viscosity which will be described later, being set
h equal to zero. In Equation (2.38), Ppc is the pressure at the free boundary
condition described by Equations (2.la and b). Notice, as shown in Table
[2.3], the conservation of mass is expressed in two steps (2 and 3), thus
enabling a solution for the location of the Lagrangian spatial coordinates,
[ for each step in time, explicitly. Steps (5-7) and (6+-8+) have to be solved

implicitly, therefore an iterative technique must be utilized for their

solution, while the remaining steps are all solved explicitly.
To insure stability of the solution over time, an expression for the time

step was taken from Reference [27] and is written here as

K Ahn+1
n+3/2 tl "
At = Vv -1 (2.398)
J VARB + {(VARB)  + (cg”) [
_ n+l 2 1 3v n+l
and VARB = BZCJ' +2 B {=- —v'-a—t) Ahj (2.39b)
where K, 31 and B, are constants while
n n+l
2 (v, = v. )
1 9v y 1 J
(- T5%) = T (2.39¢c)
v ot (vg N v2+1)Atn +15

Furthermore, the time step is never assigned a value greater than five
nanoseconds, which is to insure stable solution during decomposition,
Also to insure stability of solution, q, the artificial viscosity term was
introduced to conservation of momentum and energy equations of the mechanical
mixture,

Artificia) viscosity is employed in the numerical finite-difference
technique to prevent an infinite slope of the pressure wave, %% , which would

asymptotically occur when a shock wave is formed. Essentially, by utilizing




R A IR e s e e
, . — . S —T— Erep—g————

R
BN
SR
-
. L
47
artificial viscosity, the shock wave is spread over a finite number of
ii Lagrangian cells. A time-intensive effort was required before a proper ' f
expression for artificial viscosity was found which gave reproducible X
results. The expression for artificial viscosity, presented in Table [2.3] as g
step (4), is a combination of a quadratic equation, taken from Reference (28] ® |
(which essentially spreads the shock wave) and a linear equation, taken from
WONDY [27] and subsequently modified (which dampens the oscillation that might
occur throughout the bed). [ ‘
Sound speed is introduced only to provide mathematical closure for the ]
4
artificial viscosity expression and Equation (2.39). Steps (8 and 9%y in 3

Table [2.3] represent the expressions which are assumed to sufficiently
describe the sound speed in a porous and two phase material, respectively.

The numerical solution technique described above was incorporated into a

code given in Appendix C.
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This chapter will pre;ent several cases which capture a five-part °
scenerio of Deflagration to Shock to Detonation, as illustrated in
Figure 1.10. A1l the cases that will be presented numerically model a
ten centimeter long bed of HMX, either initially homogeneous or ; [ ]
initially porous. The bed was discretized into two hundred Lagrangian
finite-difference cells, thus corresponding to an initial grid spacing
of five tenths of a millimeter, (Ax=0.05 cm). Earlier studies, by ) ®
Coyne, Butler and Krier [10], employed the same initial grid spacing for
modeling stress wave formation and propagation in an explosive medium.
In addition, the values of the coefficients for artificial viscosity are [ ]
ARV1=2.0 and ARV2=0.1, which are used for all cases shown in the

sections to follow (unless explicitly stated otherwise). Also, as

stated in Chapter 2, the CB2 combustion model is utilized unless

explicitly stated otherwise. All propellant properties are listed in
Appendix A,

The following sections will discuss and present computed results [
for shock initiation to detonation for both homogenous and porous
materials. Validation of the model, based on several typical cases of
"ramp" wave initiation to detonation in a porous material, is also ®
included. In addition, a comparison of the two combustion models (CBI

and CB2), is presented, including calculations for different parameters.

-..‘n__g‘-g'a_'q"s‘,.;q_.llﬂ-';.__M-AAA'-A--Ln~ .-"-1_.__ _AJ;‘..'_L“




T

ntA . S e ey e

Py P Yy

49

3.1 Shock Initiation of Detonation

The first calulations considered a purely homogeneous bed of HMX. Since
the bed is purely homogeneous (no voids exist), the characteristic burn
temperature is represented simply as the temperature of the bed. Also
different from the general void containing cases, analysis for a homogeneous
material requires an artificial viscosity formulation documented in Reference
[277. A shock strength of 10 GPa, i.e., P*=10 GPa and t*=0.02 psec, was used
to initiate the stress waves that produce detonative reactions in the bed. A
different criteria was needed to initiate reaction here, since the temperature
produced by shocking the homogeneous medium was not sufficient in initiating
reaction utilizing the explosion model. If a temperature greater than 450 K
is reached, a value of 0.85 is assigned for the mass fraction, thus
artificially inducing reaction. Subsequently, a detonation was produced in
the bed, as clearly shown in Figure 3.1, which exhibits the pressure profile
of the detonation wave as it propagates through the bed, Listed in Table
[3.11, are the CJ) parameters predicted by the computer code (presented in
Appendix C) along with the CJ parameters predicted by TIGER [23]. Although
the CJ parameters predicted by code do not agree exactly with those predicted
by TIGER, the results are acceptable.

Problems arose, however, when trying to produce a shock wave in a porous
material. Figure 3.2, taken from Reference [21], shows the velocity magnitude
of the free boundary as a function of time for a homogeneous case (ao = 1),
and two porous cases (ao =1.2, and o =1.4), produced by a “"ramp" wave with
P* = 3 GPa and t* = 40 yusec. One can clearly see a "jump" in the velocity
magnitude for both porous cases contrasting with the homogeneous case which

shows a smooth transition to a steady value. Coyne, Butler and Krier [10]

<
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TABLE 3.1

PREDICTED CJ PARAMETERS FOR HOMOGENEOUS HMX

Pcd Ted ved D
(GPa) (K) (cc/q) (mm/y)

TIGER [23] 35.99 3714 0.4073 9.154 "o
Our Code 38,90 3953 0.4041 9.39 '

......................
...............................................
..........................

......
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Particle Velocity of Left Boundary

Aaialal

L .
L
cacal A

U [xo(t,t] e
v 1- — PR |
E Pressure Boundary Condition *
L 0<P=(0075 GPa/s){<3 GPa i
C /
I .8
3 T
5 Y /,— 12
M .6 T
M
/
M
I "‘aoz 1,0
C .4 +
g ,-Pmax® 3 GPa (at 40us)
S
E
C —t . .
. -2 R 0003 mm/us
(at 3 GPa)
. + SRR S
0. 40. 80.
20. 60. 100 o
TIME (MICROSEC.) e
Figure 3.2 Velocity of the left boundary as a function of time o 1
from the finite difference initial porosities compared . 1
with the velocity of a one-dimensional regressive burn, T
r = 0.001 mm/usec P (GPa). Figure taken from Ref. [21]. ]
¢ |
S
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attributed the jumps in velocity magnitude to be caused by the pore collapse

model and not by numerical inaccuracies. Therefore to introduce a shock wave o
into a porous explosive, a specific “ramp" wave is required, while considering

the propeilant bed to be inert until the compression wave has achieved the

desired strength. A condition, P* = ® GPa and t* = 10 yusec, was used to - ®
create the shock wave in a porous explosive case, @y = 1.5322, Figure 3.3

illustrates the pressure profiles leading to a steady detonation. The

predicted steady CJ values for pressure, specific volume and temperature are ;"
19.49 GPa, 0.5544 cc/g and 4597 K with a corresponding detonation velocity of

7.082 mm/usec, values which are proper for HMX with a density of pg = 1.24

g/cc, reduced from the crystalline density of o, = 1.90 g/cc when o = 1. . @

3.2 Validation of the Model

As mentioned in Chapter 1, accumulating accurate experimental data for
shock initiating a porous explosive is difficult. However, J. J. Dick [11]
was successful in obtaining "Pop plot" data through extensive runs and
statistical analysis for samples of porous HMX, namely, ap = 1.5322. Several . ® -
calculations were made here assuming a porosity identical to the one used in .
Reference [11] by J. J. Dick, varying the shock strength in order to produce a
theoretical "Pop plot". For comparison, NDick's results are displayed in | )
Figure 3.4 as solid lines, along with the computed results (shown by the
dashed line). It is clear from Figure 3.4, that although the calculated
run-up to detonation distances do not fall in the uncertain range of Dick's .;.;:
experimental results, the model does predict an almost identical slope. The
quantitative disagreemeﬁt could stem from utilizing calculated decomposition

times for the hot spots based on experimental data obtained for a similar yet L
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- 1 50

4.0

g 30

/sor(

20 JJ. Dick's Experiments \\\_
— —— Colculated Results A
) .-
o . 15 1
S 1.0 2,0 3.0
&5 Input Stress (GPa)

Figure 3.4 A comparison of numerically predicted and
experimently observed [11] run-up distance
versus input pressure for a porous bed of
HMX (ao=1.5322)
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different propellant, HNS. Futhermore, Hayes' hot spot model was based on

experimental results for porosities ranging from 1.,0875 < a, < 1.2518, where

0
Dick's experiment and the calculations were conducted for a higher porosity,
ag = 1.5322. Finally, a true shock can never be precisely modeled since the
stress wave must be spread over several grid elements, a discrepancy in the

predicted results. Nevertheless, within the limitations of the model, the

results predicted are exceptionally good.

3.3 Typical Cases

Several cases were chosen with various maximum input stresses,
characteristic rise times and porosities to test the model trends. The first
case considered an initial porosity of a, = 1.1176, initiated by a "ramp" wave
having a maximum input pressure of P* = 2 GPa and characteristic rise time of
t* = 10 usec. Figures 3.5-3.9 illustrate the distribution history of several
key parameters, namely P, a, (1-W), TH, and T. For this particular case, six
specific segments in time were chosen for illustration purposes. The first
time shown in all the five separate figures is 10 usec. By viewing Figure
3.5, one can see that the compression wave has propagated into the bed to a
distance of 1.5 cm, Notice even though the left boundary has reached the
maximum input stress, shown approximately at a location of 2 mm into the bed,
the shock front has not fully developed. Figure 3.6 illustrates the closure
of the voids as a result of the compression wave, or in other words, displays
the formation of the solid plug.

One can see from Figure 3.7, at 10 ysec, that the reaction has not
commenced, As time progresses the compression waves coalesce, strengthening

the shock front which in turn deposits larger amounts of (irreversible) energy
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into the voids prompting an increase in the hot spot temperature. Figure 3.8
li exhibits this steady increase by the positive slope of the hot spot K

temperature profile. Furthermore, one can see that the hot spot temperature

is much greater then the material temperature of the bed, the latter depicted

. in Figure 3.9, o
As time progresses to 11 psec, Figure 3.7 shows reaction has begun. This
occurrence can also be viewed by an increase in porosity (alpha), as displayed

in Figure 3,6 at that instant. Induced by the the initiation of propellant o

decomposition an increase in strength of the compression front occurs, as seen
in Figure 3.5. The effect of the strengthened compression front is a rise in
the hot spot temperatures as illustrated in Figure 3.8. Also because of the TO |
reaction, there is a predicted increase in the bulk temperature, exhibited in .

Figure 3.9 at t = 11 psec.

At the third time presented, 172 usec, the degree of reaction has i
increased, again shown in Figure 3.7 and in Figure 3.6. With the increase in

the degree of reaction, the chemical energy further contributes to strengthen

the compression front, as illustrated in Figure 3.5. In turn, a stronger .‘.
shock strength prompts a higher hot spot temperature, depicted in Figure 3.8,

and the additional chemical energy also stimulates a rise in the material

temperature, as shown in Figure 3.9. L

At 13 psec, the decomposition of the propellant is complete in a small

region of the bed near x = 2 cm, as pictured in Figure 3.7. The porosity

distribution, displayed in Figure 3.6 (at 13 ysec), shows compression ahead of ~§
the decomposition region., The effect of all of this is a right moving

detonation wave and a left or rearward moving retonation wave, as illustrated

in Figure 3.5. 0One may notice that the retonation wave has a higher peak . ®
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pressure than the detonation wave, since it must travel through a highly
compressed material, whereas the detonation wave must propagate through a
porous material. The substantial rise in the pressure front subsequently
causes an even higher hot spot temperature, due to the overabundant
jrreversible energy being deposited at the void sites, as shown in Figure 3.8,

At the fifth time shown, t = 14 usec, the region of complete
decomposition is greatly enlarged, as illustrated in both Figure 3.6 and
3.7. The chemical energy being released in turn prompts the propagation of
the detonation wave further into the propellant bed, as seen in Figure 3.5.
However, the retonative reaction has ceased propagating, causing a steady
decrease in the left moving wave. One would have expected that the retonation
wave would have propagated all the way to the left boundary. However, the
Arrhenius kinetics failed to sustain the retonation wave, just as the
Arrhenius kinetics failed to initiate reaction in homogeneous material shocked
to 10 GPa. Hayes [17] came to the conclusion, for a porous material, that
scissing of molecular chemical bonds induced the experimentally observed
decomposition times. [t is therefore postulated that a shock of substantial
strength may also change the molecular structure of a voidless propellant
enhancing reaction, Also at time, t = 14 pysec, Figure 3.8 shows that the
detonation wave produces a steady hot spot temperature. The oscillations seen
in the hot spot temperature are a result of numerical integration
inaccuracies.

At the final time shown, t = 15 ysec, Figure 3.5 illustrates the steady
detonation wave continuing to propagate even further into to the bed at a

predicted CJ pressure of 24,99 GPa and a corresponding CJ temperature of

3923 X, shown in Figure 3.9,
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In addition to the figures just presented, a locus of stress and reaction
fronts are shown in Figure 3.10. The dashed line depicts stress wave
propagation into the bed, initiating the detonation t = 12,41 usec, at
x = 2,05 cm. The solid lines represent the locus of the right and left
traveling detonation fronts, Figure 3.10 also shows the termination point of
the retonation wave. An apparent change in velocity may be seen in the left
traveling wave at the termination point, The slope of the solid lines
correspond to a detonation and retonation velocity of D = 8.757 mm/usec and
R = 9,135 mm/usec,

A second case is now presented for a material with a higher initial
porosity, namely a, = 1.1875, and with an increased strength “ramp" wave
P* = 4 GPa and t* = 10 pusec., Figures 3,11-3,15 depict the pressure, porosity,
mass fraction reacted, hot spot temperature, and bulk temperature distribution
for fixed time segments. One can see from Figure 3.11 that the detonation
occurs just behind the compression front and in the following time the stress
front is overtaken by the detonation wave,

Different from the previous case presented, no retonation takes place.
However, a left moving compression can be seen in Figure 3.11. If a chemical
change does occur when a homogeneous material is strongly shocked (enhancing
the sensitivity to reaction), as postulated earlier, a retonation would have
been caused. Also illustrated in Figure 3.11 is the steady state detonation
wave having a CJ pressure of 24,39 GPa and a corresponding CJ temperature of
4173 K depicted in Figure 3.15. The physical plane, shown in Figure 3.16,
illustrates a detonation velocity, D = 8.255 mm/usec, but no retonation

wave, The detonation occurs at a run-up distance of x = 4.83 mm at

t = 4,96 usec.
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The third case treats a material with a relatively high initial porosity,
namely a, = 1.4615 but a relatively weak ramp input wave, P* = 2 GPa and
t* = 20 ysec. Again the five parameters P, a, (1-W), Ty, and T are
illustrated in Figures 3.17-3.21, respectively, as time progresses. Similar
to the previous case (ao = 1.1875), no retonation is predicted to occur, but a
left traveling compression can be seen., In this particular case a steady CJ
pressure of 21.01 GPa and CJ temperature of 4616 K are predicted. One can see
a peak in the hot spot temperature in the regime of initial detonation. Since
a constant hot spot temperature would be expected after a detonation wave is
initiated, the predicted peak in the hot spot temperature (Figure 3.20) is
assumed to be caused by inaccuracies in the numerical steps used to obtain a
hot spot temperature. The physical plane, shown in Figure 3.22, again
presents the location and time of the occurrence of detonation, x = 2.68 cm
and t = 21.55 ysec. The slope of the solid line represents the detonation

velocity, D = 7.24 mm/usec.

3.4 Numerical Accuracy Test

In addition to the cases just shown, a comparison was made of the
pressure profile for two different initial discretized cell dimensions,
depicted in Figure 3.23, for HMX with an initial porosity, ay =1.2667, and the
imposed stress input condition, P* = 5 GPa and t* = 10 ysec. One can see that
the Tocation of the compression wave for both initial grid spacings is
approximately the same for the first two steps illustrated. However, the
difference in the pressure magnitudes for the two initial grid spacing is
sufficient to cause a detonation wave to be predicted later in the larger

initial grid spacing. The corresponding location and time of detonation for
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the initial cell dimensions, Ax = 0.1 ¢m and Ax = 0.025 cm, is x = 5.189 mm,
li t = 10.65 usec, and x = 5,668 mm, and t = 10.59 usec, respectively. Also

notice at t = 14 ysec, the larger initial grid spacing does not capture the

peak pressure,

n For the majority of cases studied here (and due to a limited amount of
computer funds) a minimum initial cell size was chosen as ax = 0.05 cm., This
value allowed us to retain essential features of the shock initiation

— physics. Furthermore, for the parametric studies carried out here the basic
trends will still be accurate. Nevertheless, quantitative results, such as

the point of detonation initiation may be somewhat in error.

3.5 Comparison of the Combustion Models

Shown in Figure 3.24 is a comparison of the predicted shock run-up to
il detonation Tlength for combustion models CBl and CB?2, for an input condition of
p* = 2 GPa and t* = 10 usec. The two models agree exactly for the last four
high alpha values studied. However, there is a considerable difference for
II the low porosity case, ay = 1.1176. In addition, utilizing combustion model
CB1, a detonation was not produced for the Tow initial porosity of
ag = 1.0566, when P* = 2 GPa and t* = 10 usec.

! Figure 3.25 illustrates the predicted pressure profile for an

ay = 1.1176, employing CB1l., Notice that the detonation is predicted to occur

at a much later time, and a substantial distance behind the compression front,

as compared to the same case employing CB2, previously shown in Figure 3.5.

However, the essential features, that is, detonation and retonation velocities
with the same CJ properties are predicted. Figure 3.26 shows the predicted

temperature profile with the resulting CJ conditions, while the physical L 3

........................................................




Run up Distance (cm)
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Figure 3.24 A comparison of combustion model CBl's and combustion

model CB2's predicted run-up distance versus porosity
utilizing a specificinput condition (P*=2 GPa,
t*=10 psec).
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plane, presented in Figure 3.27, shows the detonation and retonation
i velocities.
Since CRB2 was able to produce detonations in both low porosity cases

studied, and only slight disagreements were found in the predicted CJ

properties between the models, combustion model CB2 is the logical choice.
Table 3.2 lists the CJ parameters along with the detonation velocities for all
the porosities studied. Comparing Tables [2.1] with Table [3.2], one can see
that, although agreement between the TIGER equilibrium calculations [23] and
the predicted results presented in Table [3.2] are not exact, the same
qualitative trends are present. However, problems did occur in predicting the
proper Pcj. The proper P-; can be predicted, with some effort, by readjusting
the artificial viscosity coefficients for each porosity.

Furthermore, from the results presented in Figure 3.24, one can clearly
conclude that alpha is not a dominant factor in the effective run-up distance
to detonation for the interval 1.15 < a5 < 1.4615. One would expect a
decrease in run-up distance to detonation as the porosity increases. However,
for ag = 1.4615 an actual increase in run-up distance is predicted, although
the time to detonation, displayed in Figure 3.28, always decreases
monotonically for increasing porosity. A possible cause for the increase in
run-up distance can be attributed to the amount of initial void volume.

Figure 3.29 portrays the location of the left boundary as a function of time,
utilizing an input condition with P* = 3 GPa and t* = 40 uysec. One can
clearly see, an effect of the initial void volume, namely that for the greater
porosities the left boundary shifts further into the bed. Since the run-up
distance is measured from the initial location of the left boundary to the

location of the first Lagrangian finite difference cell to detonate, the
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»
TABLE 3.2
PRENICTED CJ PARAMETERS »
a PTo Pey Ted Vel 0
(g/cc) (GPa) (K) (cc/q) (mm/ysec) »
1.0566 1.8 23.76 3532 0.4571 10.48
1.1176 1.7 24.99 3923 0.4752 8.759 )
1.1875 1.6 24.03 4151 0.4873 8.480
1.2667 1.5 24.13 4371 0.5006 8.133
1.3571 1.4 21.37 4430 0.5206 7.685 »
1.4615 1.3 21.16 4629 0.5324 7.177
+ A1l results produced with a P* = 2 GPa and t* = 10 ysec. »
»
;
>
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Figure 3.28 Predicted time to detonaticn versus porosity
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utilizing combustion model CR2 (P*=2.0 GPa,
t*=10 usec).
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Position of Left Boundary, x,(t)

i 100.
_ » Pressure Boundary Condition
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Figure 3.29 Position of the left boundary as a function
of time from the finite difference calculations
for three different initial porosities, taken
from Reference [21]. (P*=3 GPa, t*=40 usec).
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compaction occurring in the compression front ahead of the point of detonation
could be sufficiently large resulting in an increased run-up distance
calculated for large porosity conditions. Another probable cause may have
been the over extension of Hayes' hot spot theory [[17], since the highest

porosity he studied was an a, = 1,252,

3.6 Parametric Studies

To conclude the research, two parametric studies were made. The first

compared the run-up distances for a fixed porosity (a = 1.2267) to various
stress input conditions, while the second compared run-up distances for
various input pressures with a fixed characteristic rise time (t* = 10 usec)
for different pofosities. Figure 3.30 presents the first parametric study.
One would expect a greater run-up distance to correspond to a longer
characteristic rise time for a specific input pressure, since the compression
front will reach the critical pressure needed to initiate detonation later for

the longer characteristic rise time. Figure 3.30 demonstrates the occurrence

of a longer run-up distance for a specific input pressure corresponding to a
longer characteristic rise time. The “"Pop plot" (Figure 3.4) shows that for
shock initiation of detonation the run-up distance increases with weaker input ;;:
pressures. Similarly, depicted in Figure 3.30, for "ramp" wave initiation of ; 4
detonation the run-up distance increases with decreasing input pressures.
By extrapoliating data from Figure 3.30 with input conditions having a
P* = 2 GPa, a long run-up distance to detonation is expected for slow -1
characteristic rise times, displayed in Figure 3.31. Therefore, for low input -

pressures and critically Tong characteristic rise times, detonation is not

1
expected to occur in a ten centimeter bed, eliminating the hazard of DSDT. -1
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.7 Moreover, Figure 3.32 shows an increase in run-up distance to detonation
k to correspondingly weaker input pressures for four specific porosities,

ag = 1.1875, a4 = 1.2667, a, = 1.3571, and ay = 1.4615. Evidence of numerical
- integration errors were encountered for low porosities, a, < 1.15. Therefore
no results are shown. One would expect a higher porosity bed to be more

sensitive to detonation than a lower porosity bed, thus resulting in shorter

run-up distances. Therefore the curves for different alphas should not cross
each other. However, the crossing may be attributed to a course initial grid
spacing. Although there exists some quantitative errors in Figure 3.32, one
may conclude that for porosities, in the interval of 1.15 < a5 < 1.5, do not
take a dominant role in the run-up distances. Furthermore, at relatively weak
inputs, P* < 2 GPa, the run-up distances asymptote to high values, indicating

that no detonation would be predicted for input pressures lower than 1.5 GPa.
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CHAPTER 4

CONCLUDING REMARKS
The previous chapter presented several numerically produced results which
= depicted the five-part scenario of Deflagration to Shock to Detonation
' Transition. Although some integration inaccuracies in the predicted results
were encountered, the results clearly showed that "Ramp" wave to Detonation
— Transition is a prominent hazard associated with porous explosives. 0One of
the purposes of this last chapter is to recommend necessary improvements for

further utilization of the code.

4.1 Necessary Improvements

Two areas clearly in need of improvements are: (1) the need for a better
integration scheme to define the shock waves, and (2) a better data base to
calculate the hot spot temperature and subsequent reaction rates. One of the
first steps that should be taken to accurately define the shock would be to
reduce the amount of artificial viscosity. By doing this, the shock wave will
be spread over a smaller amount of grid spaces. If additional increased
computer funding becomes available, it is recommended that the initial finite

! difference cell sizes be reduced by Uéto‘Vh. The result of both reducing the

artificial viscosity and initial cell size will be better representation of

tj the shock structure, which should alleviate most of the numerically
encountered problems. Furthermore, a more careful definition of the shock -é . 1
structure will allow a more accurate calculation of the hot spot temperature,
since one of the errors associated with the determination of a hot spot

temperature stems from the relatively poor numerical representation of the e
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shock structure. Basically, an inaccurately distributed shock wave results in
an error in the evaluation of the irreversible energy, since the compression
process is performed over several cells.

Moreover, since the reaction of a porous material initiates and is
controlled in the initial stages of decomposition by the hot spot, a better
data base is needed to accurately determine the hot spot temperature and
decomposition rates. Although the Hayes hot spot theory {171, incorporated in
the code, modeled initiation and decomposition exceptionally well for
materials with high porosities, the theory began to collapse when alpha was
less than 1.15. Therefore, it is suggested that research should be conducted
on the formulation of a model for the localized hot spots on a microscale,
both experimentally and theoretically. Also, directly related to the hot spot
temperature, experimentally observed decomposition times should be measured
for a wider spectrum of porosities. With a better understanding of the
formation and decomposition of hot spots, an improvement in the quantitative
results should be possible.

In addition to the two areas just mentioned in need of improvement, a
dynamic pore collapse model outlined in Reference [20] should be implemented
in the code either to validate or contradict the use of the static pore
collapse model now employed. Although Kooker and Anderson [9] found in their
studies that the static pore collapse theory sufficiently modeled compaction,
the inertial and viscous terms contained in the dynamic pore collapse model
may be of significance in defining the rapid compression arising from a steady

state detonation wave,

PR
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. . .
L
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4.2 Importance of the Work

Although the code did not successfully produce accurate quantitative
results for the lowest porosities studied here, the key elements of the five-
part scenario were modeled predicting a steady state detonation and, in some
instances, the occurrence of a retonation, The model was validated by a
comparison with an experimentally produced run-up length versus peak shock
variation, the so-called "Pop plot". This comparative study showed the
analysis to be somewhat conservative, predicting shorter run-up distances for
a given peak pressure,

However, the slope, &gpr VS P* was matched. A parametric study, which
varied the input conditions for a specific porosity, showed that longer
characteristic rise-time resulted in a longer detonation run-up distance. A
second parametric study, which compared run-up distances for different
porosity explosives, for various pressure inputs with the same characteristic
rise time, illustrated that porosity, in the interval 1.15 < ag < 1.5, was not
a dominant factor in the effective run-up distance.

The granulated bed/cast explosive configuration is representative of a
rocket motor which has partially fragmented. FEven though the length of the
fragmented propellant is not long enough to detonate from an accelerated
convective burn, the intact propellant may shock initiate from the rapid
pressure rise rate, It is evident that “ramp" wave initiation of detonation
is truly a serious hazard to contend with, demonstrated by the short run-up
distances corresponding to rapid rise rates for several porous cases.
However, by the extrapolation of data from the first parametric study, a
substantially long run-up length, outside the dimensions of the propellant

hed, would result for relatively long rise-time conditions.

PR
P R T T
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If the distance needed to shock initiate the cast material is greater
.l than any dimension of the rocket motor, DSDT is obviously impossible. 1If the
solid rocket propellant is unavoidably frangible, then future formulations
should be devised so that, when damaged, the propellant breaks into larger
. fragments (on the order of 1/2 millimeter). Flame spreading and convective
burning in such effectively large fragments (but smaller surface-to-volume)
would result in a local dP/dt that would produce larger t*,
As a final conclusion, one can clearly state that an alternative
methodology for transition to detonation other than the direct acceleration of

the convective burn front, is a Ramp Initiated Shock to Detonation Transition

in an impermeable but porous propellant.
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APPENDIX A

HMX PROPERTIES [9,22,23,26,29]

Explosive:
Formula: C4HgNgOg

Initial Homogeneous Specific Volume
Ambient Homogeneous Sound Velocity

Initial Yield Stress

Initial Shear Modulus

Gruneisen Coefficient

Activation Temperature

Frequency Factor

Product Gas Constant

Specific Heat (constant volume)
of the solid

*Specific Heat (constant volume)

OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE

- R S J
of the product gas Cyg = [2.4-0.28( Vo 1.3)]gK
. . . i 1 2 1 kd
Heat of Detonation Hocr= [7.91-4.33(—— - 1.3) - 0.934(— - 1.3) ]~
: DET V1o V1o g
*Detonation Velocity D = 3.64(;— - 1.3) + 6.98 mn/usec
To
Covolume Correction Term g is listed in Table [2.3] »
k’-
3 o]
b s g e e e e T T e T e

Veo = 0.5263 cc/g
Cso = 0.2642 cm/usec
= 51,7 MPa

= 3.516 GPa
14400 K
= 6.9 x 1010

= ery
2870740 oK

Cys = 1.5 J/gK
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Nonlinear volume-dependent function obtained
.. from shock Hugoniot experiments [22] J(x) = 7.57x% + 13.33x3 + 18.04x%
+ 2.828x5 + 24.01x5 + 278.3x’
+ 383,68

S0
L where X = —;—-1
S

*Nata fits of CJ data predicted by TIGER [23].

! ®
4

.............................................

..............................................................
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APPENDIX B

RECIPROCITY RELATIONS

Since very few mechanical engineers utilize the concept of Helmholtz free

energy, a step by step derivation for pressure and specific internal energy
from the free energy definition will be presented, Helmholtz free energy is
defined to be

1

e - Ts (B.1)

where y represents Helmholtz free energy, e, specific internal energy, T,

temperature, and s, specific entropy. By taking the derivative of Equation

(B.1) the following expression is obtained

dy = de - Tds - sdT (8.2)

Making use of an important thermodynamic relation

de = Tds - Pdv (8.3)

where P represents pressure and v specific volume, a substitution can be made

in Equation (B.1) yielding

dy = - Pdv - sdT (B. 4)
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L Evaluating Equation (B.4) at constant temperature an expression for pressure £ f]
N . < e . _—

) in terms of free energy is arrived at, i.e. »

; e

[ - 3 e

P = - (397 (8.5) el
’
In a similar manner, an expression for specific internal energy can be derived

by first evaluating Equation (B.4) at constant specific volume, bringing forth

B, = -5 (8.6)

Following a rearrangement of the definition of free energy and then using

Equation (B.6), specific internal energy can be expressed as
= - 3
e = y-T(3F), (8.7)

Although the derijvations may seem somewhat trivial, including the fundamentals
here may assist in the interpretation of the model and the resuits for any

given explosive. See Reference [30] for additional information.
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